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Basic Computer Organisation and Design 

Learning Objectives  

After reading this unit you should appreciate the following: 

• Instruction and Instruction Code 

• Computer Instructions 

• Timing and Control  

• Instruction Cycle 

• Memory Reference Instructions 

• Input/Output and Interrupts 

• Complete Computer Description 

• Machine Language 

• Assembly Language 

• The Assembler 

• Program Loops 

• Programming Arithmetic & Logic 

• Subroutines 

• Inputs/Outputs Programming 
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• Microprogrammed Control 

• Control Memory 

• Address Sequencing 

• Microprogram Example 

• Design Control Unit 
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The collection of bits that instruct the computer to perform a specific operation is called an instruction code. 
Operation part is the most basic part of an instruction code. The operation code of an instruction is a group 
of bits that define such operations as add, subtract, multiply, shift and complement. The total number of 
operations available in the computer determines the number of bits required for the operation code of an 
instruction. The operation code must consist of at least n bits for a given 2n (or less) distinct operations. An 
�operation� is a binary code, that instruct 
the computer to perform a specific operation. The control unit gets the instruction from memory and 
interprets the operation code bits. It then issues a sequence of control signals to initiate micro-operations in 
internal computer registers. For every operation code, the control issues a sequence of micro-operations 
required for the hardware implementation of the specified operation. 

This operation should be performed on some data stored in processor registers or on the data stored in the 
memory. Hence an instruction code must specify both the operation and the registers or the memory words 
where the operands are to be found, as well as the registers or the memory word where the operands be 
stored. Memory words can be specified in instruction codes by their address. Processor registers can be 
specified by assigning to the instruction another binary code of K bits that specifies one of 2K registers. 
There are many variations for arranging the binary code of instructions. Each computer has its own 
particular instruction code format called its Instruction Set. 
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Generally a computer has one processor register and an instruction code format with two parts. The first 
part describes the operation to be performed and the second refers to an address. The memory address 
describes the control where to find an operand in memory. Instructions and data are stored in two separate 
sections of memory. For a memory unit with 4096 words we need 12 bits to specify an address since 212 = 
4096. If each instruction code is stored, in one 16-bit memory word, four bits are available for the operation 
code (i.e. abbreviated opcode) to specify one out of 16 possible operations and 12 bits to specify the address 
of an operand. The control reads a 16-bit instruction from the program portion of memory. It then executes 
the operation specified by the operation code. If an operation in an instruction code does not require an 
operand from memory, we can use the rest of the bits in the instruction for other purposes. It is easier to use 
the address bits of an instruction code not as an address but as the actual operand. The instruction is said to 
have an immediate operand when the second part of an instruction code specifies an operand. When the 
second part specifies the address of an operand, the instruction is referred to as a �direct address�. A third 
possibility is called indirect address where the bits in the second part of the instruction refers to an address 
of a memory word in which the address of the operand is found. We use one bit of the instruction code to 
distinguish between a direct and an indirect address. The memory word that holds the address of the 
operand in an indirect address instruction is used as a pointer to an array of data. The pointer could be 
placed in a processor register instead of memory as done in commercial computers. 
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Computer instructions are generally stored in consecutive memory locations. These instructions are 
executed sequentially one at a time. In one operation the control reads an instruction from a specific address 
in memory and executes it and the process is repeated. This instruction sequencing needs a counter to 
calculate the address of the next instruction after each execution. It is also necessary to provide a register in 
the control unit for storing the instruction code after it is read from memory. The computer needs processor 
register for manipulating data and a register for holding a memory address. These requirements are listed in 
Table 2.1 with a brief description of their functions and the number of bits that they contain. 
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The memory address register (AR) has 12 bits because this is the width of a memory address. The program 
counter (PC) also has 12 bits. The PC holds the address of the next instruction to be read from memory 
after the current instruction is executed. The PC goes through a counting sequence. This causes the 
computer to read sequence and causes the computer to read sequential instructions previously stored in 
memory. 

For input and output two registers are used. The Input register (INPR) receives an 8-bit  
character from an input device. The Output register (OUTR) holds an 8-bit character for an output device. 
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The basic computer consists of eight registers, a memory unit and a control unit. To transfer information 
from one register to another and between memory and registers, paths must be provided. The number of 
wires used become excessive if connections are made between the outputs of each register and the inputs of 
the other registers. A common bus is an efficient scheme for transferring information in a system with many 
registers is to use. We have shown in previous chapter how to construct a bus system using MUXs or three 
state buffer gates. 
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The basic computer uses three instruction code formats as shown in the following figure 2.3. Each format 
has 16 bits. The operation code (opcode) part has three bits and the meaning of the remaining 13 bits 
depends on the operation code. A memory reference instruction uses 12 bits to specify an address and one 
bit to specify the addressing mode I, which is equal to 0 for direct address and 1 for indirect address. The 
register reference instructions are recognized by the operation code 111 with a 0 in the left most bit (bit15) 
of the instruction. 

A register reference instruction specifies an operation or a test of the AC register.  
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An operand from memory is not needed, therefore, the other 12 bits are used to specify the operation or test 
to be executed. Similarly, an input-output instruction does not need a reference to memory and is 
recognized by the operation code 111 with a 1 in the left most bit of the instruction. The remaining 12 bits 
are used to specify the type of input-output operation or test performed. 
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The type of instruction can be found by the computer control from the four bits in positions 12 through 15 
of the instruction. If the three opcode bits in positions 12 though 14 are not equal to 111, the instruction is a 
memory reference type and the bit in position 15 is taken as the addressing mode I. If the 3 bit opcode is 
111, then bit position 15 is checked. If this bit is 0, the instruction is a register reference type. If the bit is 1, 
the instruction is an input-output type. The bit in position 15 of the instruction code is designated by the 
symbol I, and it is not used when operation code is equal to 111. 

Three bits of the instruction are used for the operation code. The computer is restricted to a maximum of 
eight distinct operations since register reference and I/O instructions use the remaining 12 bits as part of the 
total number of instruction chosen for the basic computer is equal to 25. 

The instructions for the computer are listed in Table 2.2. The symbol reference is a three-letter word and 
represents an abbreviation intended for programmers and users. 
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Student Activity 2.1 

Before you proceed to the next section, answer the following questions. 

1. What is the significance of instruction? 

2. Describe basic computer registers. 

3. How computer instructions are identified? 

If your answers are correct, then proceed to the next section. 
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A master clock generator controls the timing for all registers in the basic computer. The clock pulses are 
applied to all flip-flops and registers in the system and in the control unit. The clock transition does not 
change the state of a register unless the register is enabled by a control signal. The control unit generates the 
control signals and provide control inputs for the multiplexers in the common bus, control inputs in 
processor registers and micro-operations for the accumulator. Control organizations are classified as 
Hardwired control and microprogrammed control. Hardwired organization, uses gates, flip flops etc to 
implement the control logic. It is advantageous in that it can be optimized to produce a fast mode of 
operation. The control information is shared in a control memory, in a microprogrammed organization. The 
control memory is programmed to begin the desired sequence of micro-operation. A hardwired control, 
requires changes in the wiring among the various components if the design has to be changed. 

The rising edge of a timing signal initiates a memory read or write cycle. We assume that a memory cycle 
time is less than the clock cycle time. By this assumption a memory read or write cycle initiated by a timing 
signal will be completed by the time the next clock goes through its positive transition. 
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A program stays in the memory unit of the computer and has a sequence of instructions. The program is 
executed by going through a cycle for each instruction. Each instruction cycle is now subdivided into a 
sequence of sub cycles or phases. In the basic computer each instruction cycle has the following parts: 

1. Fetch an instruction from memory. 

2. Decode the instruction. 

3. Read the effective address from memory if the instruction has an indirect address. 

4. Execute the instruction. 

After the completion of step 4, the control goes back to step 1 to fetch, decode and execute the next 
instruction. This process continues indefinitely unless a HALT instruction is encountered.  
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The program counter PC is loaded first with the address of the starting instruction in the program. The 
sequence counter SC is set to zero to provide a decoded timing signal T0. Tt is required to transfer the 
address from PC to AR during the clock transition associated with timing signal, because only AR is 
connected to the address inputs of memory. The instruction read from memory is then placed in the 
instruction register IR with the clock transition associated with timing signal T1. At the same moment PC is 
incremented by one to prepare it for the address of the next instruction in the program. At time T2, the 
operation code in IR is decoded, the indirect bit is transferred to flip-flop I and the address part of the 
instruction is transferred to AR. SC is incremented after each clock pulse to produce the sequence T0, T1 
and T2. During time T3, the control unit determines the type of instruction that was just read from memory. 
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The seven memory-reference instructions are given in Table 2.3. The decoded output is from the decoder 
and it is designated by Di where i is from 0 to 6. The address register AR gives the effective address (EA) 
of the instruction. The EA is taken and it is placed there during timing signal T2 (I = 0), or during timing 
signal T3 when I = 1. The execution of the memory-reference instructions begins with timing signal T4. We 
use register transfer notation to give the symbolic description of each instruction as it is clear from the 
table. In a bus system the actual execution of the instruction requires a sequence of microoperations. This is 
because data stored in memory cannot be processed directly. We have to read data from memory and 
transfer it to a register where they can be operated on with logic circuits. Now we can describe the 
operation of each instruction. We also give the control functions and microoperations required for their 
execution.  
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This instruction performs the AND logic operation on pairs of bits in AC and the memory word specified 
by the effective address. The result of the operation is transferred to Accumulator. The microoperations that 
execute this instruction are: 

D0T4: DR←M[AR] 

D0T5: AC←AC ∧ DR, SC←0. 
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The content of the memory word specified by the effective address is added to the value of AC with the 
help of this instruction. The sum is transferred into accumulator and the output carry Cout is transferred to 
the E (extended accumlator) flip-flop. The microoperations needs to execute this instruction are: 

D1T4: DR←M[AR] 

D1T5: AC←AC + DR, E ← Cout, SC←0 

% #&�%�
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This instruction is used to transfers the memory word specified by the effective address to accumulator. 
Following microoperations are needed to execute this instruction: 

D2T4: DR←M[AR] 

D2T5: AC←DR, SC←0. 

��#&����	��#��

This Instruction is used to store the content of accumulator into the memory word specified by the effective 
address. Since the output of AC is applied to the bus and the data input of memory is connected to the bus, 
we can execute this instruction with one microoperation: 

D3T4:  M[AR] ←AC,  SC ← 0 
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This instruction is used to transfer the program to the instruction located at the effective address. We 
already know that program counter holds the address of that instruction which is to be read from memory in 
the next instruction cycle. Program Counter is incremented at time T1 to make ready it for the address of the 
next instruction in the program sequence. This instruction allows the programmer to specify an instruction 
out of sequence i.e. the program branches (or jumps) unconditionally. The instruction requires only one 
microoperation: 

D4T4:  PC ←AC, SC ← 0 

With the help of common bus, the effective address from AR reaches to PC. The control transfers to T0 by 
resetting SC to 0. Now the next instruction is fetched. This is then executed from the memory address given 
by the new value in PC. 
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This is a useful instruction for branching to a portion of the program called a subroutine. When BSA 
instruction is executed, it stores the address of the next instruction in sequence (which is available in PC) 
into memory location specified by the effective address. To serve as the address of the first instruction, the 
effective address plus one is transferred to PC in the subroutine. This operation was specified in with the 
following register transfer: 

M[AR] ← PC, PC ← AR + 1 

To demonstrate this, a numerical example shows how this instruction is used with a subroutine (Figure 2.4). 
Assuming that the BSA instruction is in memory at address 20. The I bit is 0 and the address part of the 
instruction has 135 in binary. PC will contain 21, after the fetch and decode phases. This is the address of 
the next instruction in the program (referred to as the return address). Address register contains the effective 
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address 135. This is shown in part (a) of the figure. The BSA instruction performs the following numerical 
operation: 

M[135] ← 21,  PC ←  135 + 1 = 136 

The result of this operation is shown in the figure part (b). The return address 21 is stored in memory 
location 135.The control then continues with the subroutine program starting from address 136. An indirect 
BUN instruction which is placed at the end of the subroutine is used to return to the original program (at 
address 21). When we execute this instruction, control goes to the indirect phase. Here it reads the effective 
address at location 135, and it gets the previously saved address 21. When we execute the BUN instruction, 
the effective address 21 goes to program counter. In the next instruction control continues to execute the 
instruction at the return address. 

The BSA instruction can be understood as a subroutine call. The indirect BUN instruction at the end of the 
subroutine performs the function referred to as a subroutine return. In most commercial computers, the 
return address associated with a subroutine is stored in either a processor register or in a portion of memory 
(i.e. a stack). 
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When we use the bus system of the basic computer, it is not possible to perform the operation of the BSA 
instruction in one clock cycle. For the proper use of the memory and the bus, the BSA instruction must be 
executed with a sequence of two microoperations: 

D5T4:  M[AR] ←PC, AR ← AR + 1 

D5T5:  PC ←AR, SC ← 0 

A memory write operation begins with timing signal T4. At this moment it places the content of PC onto the 
bus, and at the end of the operation it enables the INR input of address register. 
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ISZ instruction increments the word referred by the effective address, and if the incremented value of the 
word is equal to 0, PC is incremented by 1. A negative number in 2's complement form is generally stored 
in the memory word. Since this negative number is continually incremented by one, at last it becomes zero. 
At that time to skip the next instruction PC is incremented by one in order.  

Now we have to read the word into DR, increment DR, and store the word back into memory, because it is 
not possible to increment a word inside the memory,. This can be done with the following sequence of 
microoperations: 

D6T4:  DR ←MR[AR] 

D6T5:   DR ← DR + 1 

D6T6:  M[AR] ←DR,  if (DR = 0) then (PC ← PC +1),  SC ← 0 
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The control flowchart is shown in the figure2.5. This flowchart shows all microoperations for the execution 
of the seven memory-reference instructions. The control functions are indicated on top of each box. The 
microoperations that are executed during time T4, T5, or T6, depend on the operation code value. This is 
showed by six different paths in the chart, one of which the control takes after the instruction is decoded. 
The last timing signal clears the sequence counter. Hence the transfer of control to timing signal T0 starts 
the next instruction cycle. 

It should be noted that we need only seven timing signals to execute the longest instruction (ISZ). The 
computer can be designed with a 3-bit sequence counter. The reason for using a 4-bit counter for SC is to 
provide additional timing signals for other instructions that are presented in the problems section. 
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Student Activity 2.2 

Before you proceed to the next section, answer the following questions. 

1. Give different phases of instruction cycle. 

2. Distinguish between Hardwired control and microprogrammed control.   

If your answers are correct, then proceed to the next section. 

Top 
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To serve usefully a computer should communicate with the external environment. Some input device 
should provide instructions and data to be stored in memory. Computational results must be showed to the 
user through some output devices. Many types of input and output devices are found in commercial 
computers.  

An alphanumeric code of eight bits is required for each quantity of information. The serial information 
from the keyboard is shifted into the input register INPR. The output register OUTR stores the serial 
information for the printer. These two registers communicate with a communication interface serially and 
with the accumulator in parallel. The I/O configuration is shown in following figure. 

FGI is a 1-bit input flag. It is a control flip-flop. We set the FGI to 1 when new information arrives in the 
input device and FGI is cleared when the information is taken by the computer. To synchronize the timing 
rate difference between the input device and the computer, we need flag. The information is transferred as 
follows. Initially, we clear the input flag FGI. An 8-bit alphanumeric code is shifted into INPR when we hit 
a keyboard, and the input flag FGI is set to 1. As long as the flag is set, the information in INPR cannot be 
changed by striking another key. The computer checks the flag bit, if it is 1 the information from INPR is 
transferred in parallel into AC and FGI is cleared to 0. Once the flag is cleared new information can be 
shifted into INPR by striking another key. 
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The output register OUTR works similar to above discussion but the direction of information flow is just 
the opposite. At the very beginning, the output flag FGO is set. Now if the flag bit is equal to 1, the 
information from AC is transferred in parallel to OUTR and FGO is clears to 0.  
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The process of communication described above is known as programmed control transfer. In this process 
the computer has to check the flag bit continually, and when it finds it set, it initiates an information 
transfer. Obviously if we transfer information in this way it is quiet inefficient because of the difference of 
information flow rate between the computer and that of the I/O device. We explain why it is so. Let a 
computer go through an instruction cycle of 1 micro second. Also let us assume that the I/O device can 
transfer data at the rate of 10 characters per second at most. This is equivalent to one character every 
100,000 micro seconds. If it has to execute two instructions, it will check the flag bit and decide not to 
transfer the information. Hence between each transfer, the computer will check the flag 50,000 times, at the 
maximum rate. It is clear now that the computer is wasting time while checking the flag while in this time it 
can do some other useful processing task. 

There is another way to perform this transfer. Let the external device inform the computer when it is ready 
for the transfer. In the meantime the computer can do other work. Interrupt facility is used for this type of 
transfer when the computer is running a program. There is no need to check the flags in this type of 
transfer. However when a flag is set, the computer is momentarily interrupted from executing the current 
program and is informed of the fact that the flag has been set. The computer deviates for a short time from 
the current job to take care of the input or output transfer. After that it returns to the current program to 
continue with it. Interrupt cycle is shown in the following figure 2.7. 

The interrupt enables flip-flop IEN can be set (to 1) and cleared (to 0) with two instructions. When IEN is 
cleared the flags cannot interrupt the computer. When IEN is set, it means that the computer can be 
interrupted. With the help of these two instructions a programmer can now decide whether or not to use the 
interrupt facility. An interrupt flip-flop R is included in the computer. When R = 0, the computer goes 
through an instruction cycle. While the execution phase of the instruction cycle IEN is checked by the 
control. If it is 0, it means we do not want to use the interrupt, therefore control continues with the next 
instruction cycle. If IEN is 1, control checks the flag bits. If both flags are 0, then it shows that neither the 
input nor the output registers are ready for information transfer. In this case, control continues with the next 
instruction cycle. If either flag is set to 1 while IEN = 1, flip-flop R is set to 1. 

The interrupt cycle is a hardware mechanism to branch and save return address operation. The return 
address available in a PC is stored in a specific location where it can be found later when the program 
returns to the instruction at which it was interrupted.  

A total computer system consists of both hardware and software. Hardware means the physical components 
and all other associated equipment. Software means the programs that are written for the computer. It is 
possible to be familiar with various aspects of computer software without being concerned with details of 
how the computer hardware operates. 
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Complete Computer Description is given in the flowchart. It consists of instruction cycle, including the 
interrupt cycle for the basic computer as shown in Figure 2.7. The interrupt flip-flop R may be set at any 
time during the execution phase. Control returns to timing signal T0 after SC is cleared to 0. If R = 1, the 
computer goes through an interrupt cycle. If R = 0, the computer goes through an instruction cycle. If the 
instruction is one of the memory-reference instructions, the computer first checks if there is an indirect 
address and then continues to execute the decoded instruction according to the flowchart of Figure 2.7. 
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If we do not want to use the flowchart, we can describe the operation of the computer with a list of register 
transfer statements. This is done by accumulating all the control function and microoperations in a table. 
The entries in the table are taken from Figure 2.5 and 2.8. 

The control functions and microoperations for the whole computer are given in Table 2.4. The register 
transfer statements in this table shows in a concise form the internal organization of the basic computer. 
Register transfer statements also provide the information required for the design of the logic circuits of the 
computer. Boolean functions for the gates is determined by the control functions and conditional control 
statements listed in the table. The microoperations given in the table give the type of control inputs required 
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for the registers and memory. A register transfer language is useful for specifying the logic circuits needed 
for its design. It is useful for describing the internal organization of a digital system. 
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To write a program for a computer we need to specify, directly or indirectly, a sequence of machine 
instructions. Machine instructions inside the computer form a binary pattern, which is difficult to 


